
Scalable Modeling and Analysis of Requirements
Preferences: A Qualitative Approach using CI-Nets

Zachary J. Oster
Department of Computer Science

University of Wisconsin-Whitewater
800 West Main Street
Whitewater, WI 53190

osterz@uww.edu

Ganesh Ram Santhanam
and Samik Basu

Formal Methods and Verification Group
Department of Computer Science

Iowa State University, Ames, IA 50011
gsanthan@iastate.edu, sbasu@iastate.edu

Abstract—We present a framework for reasoning with prefer-
ences in the context of Goal-Oriented Requirements Engineer-
ing (GORE). Our choice of preference language, conditional
importance networks (CI-nets), is motivated by the occurrence in
requirements engineering of qualitative preferences and tradeoffs
involving sets of items; such preferences are expressed more
naturally in CI-nets than in other representations. Building
on our past experience with CI-nets, we are improving the
scalability and usability of CI-nets for specifying and analyzing
requirements preferences. We discuss our ongoing work and long-
term plans, including efforts to develop more efficient methods
to identify conflicting preferences among possible requirements,
guide negotiation of resolutions to such conflicts, and improve
traceability and comprehension of requirements preferences.

I. INTRODUCTION

Identifying the requirements for a software system involves
understanding and navigating tradeoffs among a wide variety of
possible attributes that the system could possess. Many of these
tradeoffs are conditional, meaning that they depend on a certain
assumption being true. For instance, if an online retail system
provides its own credit card payment-processing functionality,
then stronger security (e.g., secure HTTP connections, two-
factor authentication) is more important than low operating
cost. This preference might be reversed if payment processing
were outsourced to a third party.

Preferences among possible requirements for a software
system may also involve comparisons between sets of items,
rather than individual items. As an example, hospital ad-
ministrators acquiring a medical records management system
would likely prefer to maximize both system reliability and
patient data confidentiality, compared to the less-important
goals of minimizing operating cost and maximizing ease of
use. However, relationships among these individual goals may
not be clear from this broader statement, or even consistent with
it. Yet many widely used techniques for analyzing preferences
(e.g., [1]) are limited to quantitative modeling of unconditional
tradeoffs between pairs of individual items. Although such
techniques are useful for many purposes, they may obscure
the nuances of preferences among larger sets of items, which
play an important role in requirements engineering.

Conditional importance networks (CI-nets) [2] are a recently
developed formalism that allows users to accurately model

and reason with a wider variety of qualitative preferences than
allowed by other formalisms (namely, conditional preferences
over sets of one or more items). CI-net statements consist of
four sets arranged in the following form:

{true-conditions}, {false-conditions} :
{more-preferred-items} � {less-preferred-items}

The first two sets may be empty, while the remaining two sets
must each contain one or more items.

The preferences in the previous examples can be represented
naturally as CI-net statements without loss of information. The
first example can be written as the CI-net statement

{In-House Card Processing}, {} :
{High Security} � {Low Operating Cost}

Note that the preference {High Security} � {Low Operating
Cost} holds only if the condition {In-House Card Processing}
is true. (See Section II-B for more information about CI-nets.)

The main objective of our work is to improve requirements
modeling, analysis, and negotiation by making it easier to
incorporate set-based conditional preferences, modeled as CI-
nets, within these processes. We believe that CI-nets can play a
vital role in solving the following problems, even when dealing
with large sets of preferences expressed by many stakeholders:

1) Identify where certain requirement preferences conflict
with one another, or where preferences are incompatible
because of inherent tradeoffs in the system design.

2) Choose the “best” set of requirements, i.e., the set of
requirements that best aligns with the preferences of the
largest and/or most important collection of stakeholders.

3) Help system stakeholders visualize the set of requirement
preferences, as well as any conflicts between preferences,
in ways that help them comprehend the space of possible
system design choices and guide them toward efficiently
resolving conflicts between preferences.

4) Support traceability between preferences and any re-
quirements that are derived from them, and document
the evolution of the preference model as stakeholders
negotiate compromises and as new requirements and
preferences come to light.

We aim to apply these techniques in the context of the Goal-
Oriented Requirements Engineering (GORE) methodology

978-1-4673-6905-3/15 c© 2015 IEEE RE 2015, Ottawa, ON, Canada
RE:Next! Track

Accepted for publication by IEEE. c© 2015 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/
republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.

52

214



BookVBuy

Order Shipping

NoV
Tracking

Tracking

Payment

RequireV
AccountVLoginV

SearchV
Books

Checkout

AllowV
guestV

AND

AND OR

OR

Captcha
Validation

OnlyVCVCV
Validation

OR

AccountVLoginV
/VNewVSignup

guestV
checkout

Security CostTraceabilityArchitect Manager

Fig. 1. Sample GORE goal model for online retailer

developed by Mylopoulos et al. [3]. In GORE, requirements
for a system are represented as a goal model, which illustrates
the AND-OR decomposition of a root goal into more concrete
lower-level goals for the system. Softgoals and/or optional
goals, which may be linked to the main goal model, specify
properties that are desirable but are not part of the system’s
core requirement set. Several other researchers, including [4]
and [5], have proposed methods for prioritizing possible system
implementations according to preferences among softgoals
and/or optional goals. Although our framework shares their goal
of automating analysis of both preferences and goal models
to help stakeholders select highly preferred system design
options, our use of CI-nets for preferences provides support
for conditional and set-based qualitative preference statements,
which (to our knowledge) are not natively supported by previous
approaches.

The remainder of this paper is organized as follows. Sec-
tion II-A provides an overview of the GORE methodology
and the need to account for preferences within the goal
models used in GORE. Section II-B describes the CI-net
formalism and provides an example of its use in the context of
the GORE methodology. Section III summarizes our group’s
current work toward improving the usefulness of CI-nets for
requirements modeling and preference analysis within GORE.
Finally, Section IV describes our long-term vision for the
impact of this work, along with some possible opportunities
for collaboration with others in the RE community.

II. BACKGROUND

We begin with an overview of essential concepts used in our
work. After introducing the core ideas and terminology of the
GORE methodology, including a tour of a sample goal model,
we briefly introduce preference modeling and reasoning using
CI-nets and their induced preference graphs (IPGs).

A. Goal-Oriented Requirements Engineering
In GORE, requirements for a given system are represented

as a goal model, which illustrates the AND-OR decomposition

of a root goal into lower-level goals for the system. The root
goal expresses the overall requirement for the system, while the
lower-level goals specify aspects of the root in greater detail,
including possible alternatives for satisfying a higher-level
requirement. Given a goal model for a proposed system, correct
implementations of the proposed system can be identified by
computing satisfiable assignments to the leaf nodes of the goal
model [6].

Optionally, the goal model may also contain a set of
softgoals or optional goals, which are not part of the system’s
core requirement set but are desirable properties for the
system to possess. Because softgoals and/or optional goals are
linked to goals within the AND-OR graph of the goal model,
two different implementations of the system may support or
interfere with different sets of softgoals or optional goals, even
though they both fulfill the core requirements for the system.
If preferences over the possible combinations of softgoals or
optional goals are known, then possible implementations of the
system can be prioritized according to these preferences [5].

Consider a goal model for an online retailer (Figure 1),
where each core function may be realized in multiple ways.
The unshaded node at the root of the AND-OR tree represents
the required overall functionality of the system: in this case,
the system’s main purpose is to allow users to buy books. The
rest of the unshaded nodes represent sub-goals, which specify
parts of the functionality needed to accomplish a higher-level
goal (AND-decomposition) or alternative methods for fulfilling
a higher-level goal (OR-decomposition). The shaded nodes
represent non-functional properties (NFPs) that the system
could possess, while the MAKE (green) edges and BREAK
(red) edges indicate whether a sub-goal contributes to the
satisfaction of an NFP or violates it, respectively. Observe that
there are many correct designs, which differ in terms of their
NFPs: security (S), transaction costs (C) and traceability (T ).

Let the manager and the software architect be the two major
stakeholders who influence the design decisions in the project.
Suppose that the manager holds preference P1, “Cost is more
important than Traceability, provided the design is Secure”.
Further, suppose the architect holds preference P2, “Traceability
is more important than Security”. Any design satisfying all three
NFPs is trivially the most preferred design that is consistent
with the preferences of both the manager and the architect.
However, such a design is not realizable because all three NFPs
cannot be simultaneously optimized.

The next best alternative would be a design that satisfies
two of the NFPs. Among the pairs of NFPs, we can infer
that (T,C) is preferred to (S,C) because of the architect’s
preference (P2), and (S,C) is preferred to (S, T ) because
of the manager’s preference (P1). Because the goal model
indicates that no correct design exists that satisfies (T,C), we
next explore the existence of a correct design that satisfies
(S,C). Such a design exists, according to the goal model;
moreover, it is provably the most preferred correct design with
respect to the preferences of the architect and manager.

Although it is easy to identify the most preferred correct
design manually for this small example, this task becomes

215



S, T, C

T, C

T

S, T S, C

S C

MP1

AP2

AP2

Fig. 2. Induced preference graph for CI-net with preferences P1 and P2

far more complicated in the presence of a large number of
stakeholders and goal models with many nodes. Moreover,
there may arise conflicts among the preferences of the various
stakeholders: for example, the manager may specify that Cost is
more important than Traceability and Security, but the architect
may specify that Security is more important than Traceability
and Cost. What is the most preferred combination of NFPs to
be satisfied in this case? How would the solution change if
the manager’s preferences take precedence over the architect’s
preferences due to the manager’s higher authority?

B. Conditional Importance Networks (CI-Nets)

Conditional importance networks (CI-nets) [2] provide a
formalized way to specify relative importance among sets of
items. We will limit ourselves here to a high-level overview
of CI-nets and how they can be used; those who are interested
in the details of CI-net semantics should consult [2] or [7].

Suppose a group of system stakeholders is asked to decide
which of several non-functional properties are most important
for a system to provide; let V be the set of all properties being
considered. A CI-net C is a set of preference statements, where
each statement contains four sets of items selected from V
that are arranged as follows:

{true-conditions}, {false-conditions} :
{more-preferred-items} � {less-preferred-items}

All four sets must be disjoint, i.e., no two sets may contain the
same item. The true-conditions and false-conditions sets may be
empty, but more-preferred-items and less-preferred-items must
contain at least one element. Informally, a CI-net statement
means: “Given two sets of items, if all of the true-conditions
are included in both sets and none of the false-conditions are
included in either set, then the set that includes all of the
more-preferred-items is preferred to the set that includes all of
the less-preferred-items, all else being equal.”

Automated preference reasoning over a CI-net is possible
because every CI-net induces a strict partial order over the set of
all possible combinations of properties in V (i.e., the powerset
of V ). This partial order is defined by combining the importance
rules specified by the CI-net statements with a monotonicity
rule, which provides an intuitive default preference in the
absence of specific guidance. Informally, the monotonicity rule
states that for any two sets of items A and B, if B contains

every item in A plus at least one additional item (i.e., if B ⊃ A),
then B must be preferred to A (B � A). As an example of
the intuition behind the monotonicity rule, if offered a choice
between a new car with minimal fuel included or the same new
car with a full tank of fuel (at the same price), most people
would choose the car with more fuel included.

Using the CI-net’s preference statements and the monotonic-
ity rule, it is possible to construct a graph where each node
represents a different set of properties selected from V and
each directed edge from one node to another indicates that
the set of properties at the destination node is preferred to the
set of properties at the source node. Such a graph is referred
to as the CI-net’s induced preference graph (IPG) [2]. An
algorithm for constructing the IPG of a CI-net is described
in [8]. Figure 2 shows the IPG for the example preferences
given in Section II-A, which can be expressed by the following
CI-net statements:

(P1) {S}, {} : {C}, {T}
(P2) {}, {} : {T}, {S}

We discuss in Section III-B our prior work toward integrating
CI-nets into the context of the GORE framework, as well as
our ongoing extensions of that work. In addition, we have
applied CI-nets to model, analyze, and reason with preferences
in a range of other problem domains, including:

1) Trust negotiation [8]: Given several sets of credentials
that can be used to authenticate a client to a server, what
is the least sensitive set of credentials (with respect to the
client’s privacy preferences) that is sufficient to convince
the server to grant access to the client?

2) Cybersecurity [9]: How can a computer system ad-
ministrator select the best set of countermeasures to
deploy in response to an attack on the system to most
effectively thwart the attacker’s expected goals while
causing minimal disruption to authorized users?

3) Sustainable building design [10]: Given the tradeoffs
between the costs and benefits of sustainable building
features or practices in a construction project, which
collection of features and/or practices will satisfy the
sustainability preferences of the client at the lowest cost?

III. CURRENT WORK

Our main objective in applying CI-nets to preference
reasoning within goal models is to make set-based qualitative
conditional preferences more easily usable for requirements
modeling, analysis, and negotiation. We are currently pursuing
two primary research directions to accomplish this objective.
On one hand, we are developing ways to improve the scalability
of preference analysis by developing more efficient algorithms
for identifying conflicting preferences within CI-nets and for
finding the most preferred sets of items as indicated by a CI-
net. On the other hand, we are developing tools and related
algorithms to support human users in comprehending, refining,
and applying the large amount of information embedded in both
CI-nets and goal models. Such tool support is especially impor-
tant to make the analysis of set-based qualitative preferences

216



S, T, C

T, C

T

S, T S, C

S C

MP1

AP2

MP3AP2

MP3

Fig. 3. Induced preference graph for CI-net with preferences P1, P2, and P3

practical for industrial-scale systems, because such preferences
are not easily reduced to quickly understood (but possibly
misunderstood) metrics and because requirements negotiation
for a large system can be complex and time-consuming.

A. Efficient Conflict Identification

Before attempting to draw conclusions from a set of prefer-
ences, it is necessary that the preferences be consistent with
each other, meaning that no preference contradicts any other
preference in the set. If conflicting preferences exist, preference
reasoning algorithms cannot make any guarantees about the
correctness of their results. More importantly, identifying
conflicts among stakeholders’ expressed preferences early in
the requirements engineering process can guide stakeholders
toward making important decisions about the purposes and
design of the system before large amounts of resources are put
into implementing the “wrong” system.

Revisiting our example from Section II-B, we observe that
conflicts arise when stakeholders specify opposing preferences.
For example, suppose that the manager adds another preference
P3, “Security is more important than Traceability”, to the
preference set. This can be written as the following CI-net
statement:

(P3) {}, {} : {S}, {C}
Figure 3 shows the IPG for this new set of preferences, with the
additional edges/flips induced by P3 shown in red. Note that the
new IPG has cycles, indicating that the combined preferences
are no longer consistent. One can reason that among the sets
of NFPs, (S,C) is preferred to (S, T ) due to P1, which is in
turn preferred to (T,C) due to P3, which is in turn preferred
to (S,C) due to P2. How can such conflicts be detected and
resolved?

The preferences specified in a given CI-net are consistent if
and only if the IPG for the CI-net is acyclic [2]. In [7], we used
model checking to perform path-based reachability analysis
on IPGs; under this approach, a given CI-net is consistent
if and only if all paths through the CI-net’s IPG that start
at the “bottom” of the IPG (where no preference items are
provided) eventually reach the “top” of the IPG (where all
preference variables are provided). The results of this model
checking-based algorithm have been proven correct in [7]
and are simple to implement using existing model checking

tools. Unfortunately, this algorithm does not scale well to
large CI-nets (e.g., those with more than 10 total preference
items), as Θ(2N ) time is required to construct the explicit IPG
before the reachability analysis can begin. Another approach
for verifying consistency among preferences would be to use an
optimal algorithm for finding strongly-connected components
in a graph, such as Tarjan’s algorithm [11]. In this case, absence
of strongly-connected components indicates a consistent set
of preferences. However, although Tarjan’s algorithm runs in
linear time, Θ(2N ) time is still needed to construct the IPG to
be searched for strongly connected components.

To improve the scalability of consistency checking for CI-
nets, we are exploring a “syntactic” approach to consistency
checking that will correctly report any conflicts between
preferences without explicitly constructing the full IPG. This
approach is based on our observation that certain patterns within
CI-net statements give rise to cycles in the corresponding IPG.
For example, the CI-net statement

{}, {} : {Low Operating Cost}
� {Low Operating Cost, High Throughput}

contradicts the monotonicity preference in a CI-net, which
implies that {Low Operating Cost, High Throughput} is
preferred to {Low Operating Cost}. Given CI-net statements
of the form shown in Section II-B, conflicts of this type can
be found by simply examining each CI-net statement to see
whether the less-preferred-items set includes every item in
the more-preferred-items set; examining the entire IPG is not
necessary. We are working to identify more complex patterns
within either individual CI-net statements or sets of statements
that, if present, would indicate either the presence or absence of
cycles in the corresponding induced preference graph. Ideally,
this will allow us to identify all conflicts between specific
preference statements in a given CI-net without incurring
the substantial overhead needed to construct the induced
preference graph. Even if this is not possible, we anticipate
that we will be able to use limited syntactic analysis of CI-net
preferences to improve the scalability of consistency checking
by (a) identifying classes of CI-nets whose preferences can
be efficiently verified as consistent or inconsistent and (b)
identifying the parts of an IPG that must be constructed and
analyzed to decide consistency, thus eliminating the need to
construct the full IPG.

Scalable techniques for consistency checking are clearly
needed to enable automated reasoning over large, complex
sets of preferences. However, our vision for this aspect of
our work goes beyond this immediate objective. We believe
that scalable CI-net consistency checking can and should be
used to improve system stakeholders’ awareness of conflicts
and tradeoffs among competing preferences for the system.
If stakeholders are aware of these conflicts and tradeoffs,
which are often not apparent until the first prototypes of the
system are built, they can find mutually acceptable solutions to
these problems earlier in the system development cycle, saving
significant amounts of time, money, and stress.

217



B. Efficient Identification of Preferred Alternatives

Once conflicts are identified and removed from the set of
preferences, it becomes possible to identify the most preferred
sets of properties that the system could have. Knowing this
information allows stakeholders to identify possible implemen-
tations of the desired system that provide the most preferred
sets of properties. If no such implementation exists, it should
be possible for stakeholders to obtain an approximately equally
preferred or next-most-preferred set of system properties.
Ideally, reasoning over qualitative preferences for various
properties of the system would go hand-in-hand with analysis
of the possible configurations or implementation of the system
specified in a goal model within the GORE methodology. As
with consistency checking, though, this family of problems is
computationally difficult.

The problem of deciding whether one set of items is
preferred to another is known as dominance testing. Although
the dominance testing problem is PSPACE-complete in the
general case [2], we have presented in [8] a model checking-
based approach for CI-net dominance testing that identifies
the most-preferred set of system properties (CI-net variables)
in a reasonable amount of time and space (less than one
second and 7 MB of memory) for relatively small CI-nets
(up to 16 statements and 10 variables) on a standard Windows
laptop. Using this approach, the costs of finding the second-
most preferred, third-most preferred, etc. sets of properties are
about the same as the cost of finding the most preferred set
of properties. The approach is based on modeling the IPG
for a CI-net as a Kripke structure, using model checking to
verify the Kripke structure against specially formed temporal-
logic properties, and gradually constructing a weak total order
over all possible combinations of system properties (CI-net
preference items). The weak total order produced by this
analysis is consistent with the partial order induced over sets of
system properties by the IPG. In [12], we illustrated how this
preference reasoning framework can be connected to analysis
of goal models in the GORE methodology to identify promising
implementations of a desired system.

As with checking the consistency of a set of preferences,
scalability is still a major challenge when it comes to identifying
highly preferred sets of system properties and for identifying
feasible implementations of a proposed system that best satisfy
the preferences of the system’s stakeholders. Our group’s
current work in this area involves exploring several possible
avenues for more efficient identification of preferred alterna-
tives. One possible approach involves representing preferences
using alternative formalisms, such as binary decision diagrams
(BDDs), which have been used in efficient algorithms for
solving related problems in model checking. Since possible
implementations of a system can be identified as satisfiable
assignments to a goal models [6], we are also interested
in seeing how the latest advances in algorithms and tools
like satisfiability (SAT) and satisfiability modulo theorem
(SMT) solvers might be applied to prioritize possible system
implementations in descending order of preference, as well

as the role that tools from the Knowledge Representation and
Reasoning community as described in [13] may be able to
play. Additionally, our group is working to identify heuristics
for finding approximately optimal system implementations
much more efficiently than exhaustive methods might allow.
The objective of this research direction is to discover creative
algorithmic solutions to analyze CI-nets and their corresponding
goal models in a reasonable amount of time and space, even
for industry-scale systems and their large, complex requirement
and preference models.

C. Improved Comprehension of Preference Information

One of the core problems in requirements engineering is
ensuring traceability between requirements and the information
from which those requirements were derived. In the words
of Pinheiro and Goguen in [14], “Requirements traceability
refers to the ability to define, capture and follow the traces
left by requirements on other elements of the software de-
velopment environment and the trace left by those elements
on requirements.” Clearly, many system requirements are
affected by the preferences of the system’s stakeholders, so it
is important to provide traceability between preferences and
their corresponding requirements. However, a requirements
engineering process for even a relatively small, simple system
can produce a large amount of information, and this problem
is only heightened by the addition of detailed preference
information to the process. Even with formalisms such as goal
models and CI-nets that provide a basic organizational structure
for this information, there may be too much information
for a requirements specialist, much less an ordinary system
stakeholder, to process at a glance.

Our past work in this area includes the iPref-R framework,
which provides tool support to assist end users with prefer-
ence analysis using CI-nets. iPref-R, which is available at
http://fmg.cs.iastate.edu/project-pages/GUI-iPref-R/, currently
provides a graphical front-end for analysis of CI-net and [T]CP-
net preferences using our model checking-based approaches.
The iPref-R front-end guides users through the process of
creating a CI-net while hiding the complexity of the underlying
preference language, then assists users in checking their
specified preferences for consistency and identifying the most
preferred combinations of properties. Although the current
GUI for iPref-R is helpful, it falls short of the ideal in that it
does not allow users to visualize the space of possible system
designs or interactively explore conflicts between preferences.

One of the long-term goals of our research in this area is the
development of tools and techniques for visualizing preference
and requirement data in ways that allow stakeholders to see
interactively what tradeoffs exist; which stakeholders expressed
which preferences; or how various requirements, properties,
and preferences depend on one another. Our current work in
this area involves developing an easily understood visualization
of the IPG induced by a given CI-net. This visualization will
display basic information about preferences among possible
system properties, but users will also be able to interactively
query the visualization to find out more detailed information

218



that traces preferences to specific stakeholders or to items in
the set of system requirements. Users of this visualization will
also be able to discover the tradeoffs that are represented in
the goal model and the preference model, which will allow
them to explore how these tradeoffs affect the space of possible
system design choices.

Our eventual vision for this research direction is to produce
a well-designed, easy-to-use “requirement model dashboard”
that allows requirements engineers and stakeholders alike to
comprehend the evolving requirement base, along with the
constraints, preferences, and tradeoffs that influenced the choice
of requirements used to implement the system, each traceable
to a specific source.

IV. CONCLUSION AND FUTURE DIRECTIONS

We are working to improve support for the use of CI-nets in
modeling preferences among desirable properties of a proposed
system and to assist stakeholders in choosing implementation
options that will produce a system that is more preferred to
more stakeholders than any other alternative. To support this
vision, we are pursuing scalable solutions to several problems
that stand in the way of CI-nets being used more widely for
preference modeling and analysis: identifying conflicts between
preferences for the system, choosing a system implementation
(set of requirements) that allows the system to provide the most
preferred possible set of properties, helping system stakeholders
comprehend and refine the tradeoffs and preferences that limit
choices for implementing the system, and supporting improved
traceability as the preferences and requirements for the system
evolve together through the requirements engineering process.

In the next two years, we anticipate substantial progress in
our current work toward developing more efficient techniques
for preference analysis and requirement selection using CI-
nets. These new techniques for CI-nets will complement or
improve upon existing preference reasoning techniques based
on model checking, SAT/SMT solving, and/or AI planning. We
are looking forward to integrating CI-net preference modeling
and analysis more fully into the GORE methodology; in fact,
we hope to make this the subject of a full-length paper to be
submitted to a future RE conference. However, one challenge
for our group is a lack of “real-life” requirements data against
which to evaluate our ideas. We welcome opportunities to
collaborate with industry partners or other researchers in this
area; we are interested to see how our ideas can move others’
work forward.

We are just beginning to develop tools for visualizing and
comprehending goal models and CI-net preference models. A
prototype tool for visualizing the IPG of a CI-net should be
ready within the next few months. Although this functionality
is relatively simple, it will serve as the foundation for our work
in visualization, comprehension, and traceability of preferences
and their corresponding requirements. Eventually, we intend
to combine this visualization tool with our existing graphical
front-end for specifying and modifying preferences to create
a “preference workbench” for specification, visualization, and
editing of preferences by system stakeholders with no special

expertise in preference modeling. Again, we would like to
collaborate with partners in industry or academia who would
benefit from such a workbench for preference reasoning.

We believe that improving support for set-based qualitative
preferences in requirements engineering may greatly improve
stakeholders’ understanding of the choices that go into the
design of a system, as well as their sense of control over
those choices. As a result, systems produced by considering
such preferences during the requirements engineering process
will satisfy their stakeholders’ preferences better than other
systems, increasing stakeholder satisfaction while reducing
time and other resources spent on mid-project redesigns.

ACKNOWLEDGMENT

This work was supported in part by U.S. National Science
Foundation grant CCF 1143734.

REFERENCES

[1] J. Karlsson and K. Ryan, “A cost-value approach for prioritizing
requirements,” IEEE Software, vol. 14, no. 5, pp. 67–74, 1997. [Online].
Available: http://doi.ieeecomputersociety.org/10.1109/52.605933

[2] S. Bouveret, U. Endriss, and J. Lang, “Conditional importance networks:
A graphical language for representing ordinal, monotonic preferences
over sets of goods,” in IJCAI, C. Boutilier, Ed., 2009, pp. 67–72.

[3] E. S. K. Yu and J. Mylopoulos, “Understanding ‘why’ in software process
modelling, analysis, and design,” in ICSE, 1994, pp. 159–168.

[4] N. A. Ernst, J. Mylopoulos, A. Borgida, and I. Jureta, “Reasoning
with optional and preferred requirements,” in ER, ser. Lecture Notes
in Computer Science, J. Parsons, M. Saeki, P. Shoval, C. C. Woo, and
Y. Wand, Eds., vol. 6412. Springer, 2010, pp. 118–131.

[5] S. Liaskos, S. A. McIlraith, S. Sohrabi, and J. Mylopoulos, “Integrating
preferences into goal models for requirements engineering,” in RE. IEEE
Computer Society, 2010, pp. 135–144.

[6] R. Sebastiani, P. Giorgini, and J. Mylopoulos, “Simple and minimum-cost
satisfiability for goal models,” in CAiSE, 2004, pp. 20–35.

[7] G. R. Santhanam, S. Basu, and V. Honavar, “Dominance testing via
model checking,” in AAAI. AAAI Press, 2010, pp. 357–362.

[8] Z. J. Oster, G. R. Santhanam, S. Basu, and V. Honavar, “Model checking
of qualitative sensitivity preferences to minimize credential disclosure,”
in FACS, ser. Lecture Notes in Computer Science, C. Pasareanu and
G. Salaün, Eds., vol. 7684. Springer, 2012, pp. 205–219.

[9] G. R. Santhanam, Z. J. Oster, and S. Basu, “Identifying a preferred
countermeasure strategy for attack graphs,” in Proceedings of the Eighth
Annual Cyber Security and Information Intelligence Research Workshop,
ser. CSIIRW ’13. New York, NY, USA: ACM, 2013, pp. 11:1–11:4.
[Online]. Available: http://doi.acm.org/10.1145/2459976.2459988

[10] G. R. Santhanam, S. Basu, and V. Honavar, “Identifying sustainable
designs using preferences over sustainability attributes,” in Artificial
Intelligence and Sustainable Design, Papers from the 2011 AAAI
Spring Symposium, Technical Report SS-11-02, Stanford, California,
USA, March 21-23, 2011. AAAI, 2011. [Online]. Available:
http://www.aaai.org/ocs/index.php/SSS/SSS11/paper/view/2461

[11] R. E. Tarjan, “Depth-first search and linear graph algorithms,” SIAM
J. Comput., vol. 1, no. 2, pp. 146–160, 1972. [Online]. Available:
http://dx.doi.org/10.1137/0201010

[12] Z. J. Oster, G. R. Santhanam, and S. Basu, “Automating analysis of
qualitative preferences in goal-oriented requirements engineering,” in
ASE, P. Alexander, C. S. Pasareanu, and J. G. Hosking, Eds. IEEE,
2011, pp. 448–451.

[13] A. Borgida, J. Horkoff, and J. Mylopoulos, “Applying knowledge
representation and reasoning to (simple) goal models,” in IEEE 1st
International Workshop on Artificial Intelligence for Requirements
Engineering, AIRE 2014, 26 August, 2014, Karlskrona, Sweden,
N. Bencomo, J. Cleland-Huang, J. Guo, and R. Harrison, Eds. IEEE,
2014, pp. 53–59. [Online]. Available: http://dx.doi.org/10.1109/AIRE.
2014.6894857

[14] F. A. C. Pinheiro and J. A. Goguen, “An object-oriented tool for tracing
requirements,” IEEE Software, vol. 13, no. 2, pp. 52–64, 1996. [Online].
Available: http://doi.ieeecomputersociety.org/10.1109/52.506462

219


