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Abstract

Conditional importance networks (CI-nets) provide
a formal framework for modeling and reasoning
with qualitative preferences over sets of many vari-
ables. Existing approaches for verifying the satis-
fiability of a CI-net operate on a complete model
of the CI-net’s semantics, but the time required to
construct this model is exponential in the number
of preference variables; this inefficiency limits the
practical usefulness of CI-nets. To bypass this per-
formance bottleneck, we present a new algorithm
that decides whether a CI-net is satisfiable by an-
alyzing a sufficient partial model of its semantics,
and we show how to efficiently construct such a
partial model. Our approach can significantly re-
duce the average time required to verify a CI-net’s
satisfiability compared to existing methods.

1 Introduction
Conditional importance networks, or CI-nets [Bouveret et al.,
2009], provide an expressive language for specifying, model-
ing, and reasoning over qualitative preferences among sets of
items. Preferences of this type appear in a wide variety of
problem domains, including software requirements engineer-
ing [Oster et al., 2015], online trust negotiation [Oster et al.,
2012], and cybersecurity [Santhanam et al., 2013b].

In order to guarantee the correctness of conclusions that are
reached by reasoning over a CI-net, it is necessary to verify
that the CI-net is satisfiable. Existing methods for verifying
CI-net satisfiability, including those defined by Bouveret et
al. [2009] and Santhanam et al. [2010], begin by constructing
a graphical model called a preference graph that explicitly
represents the (partial) ordering of preferences encoded in the
semantics of the given CI-net. Once the preference graph is
constructed, the next step is to check the graph for cycles;
the CI-net is satisfiable if and only if its preference graph is
acyclic [Bouveret et al., 2009]. Unfortunately, constructing
the preference graph is a computationally intensive task that
requires Θ(2N) time for a CI-net that expresses preferences
over N variables (preference items) [Oster et al., 2012].

The main contribution of this paper is a novel algorithm
for verifying CI-net satisfiability without needing to construct

and analyze the entire preference graph. Since the complex-
ity of CI-net satisfiability checking is dominated by the time
and memory costs of constructing the semantic model to be
analyzed, our approach can significantly reduce the time and
memory required for satisfiability checking compared to ex-
isting approaches. In the process, we prove several results
about the semantics of CI-nets, including a new satisfiability
condition that provides the theoretical basis for our verifica-
tion algorithm’s correctness. We also describe our implemen-
tation of this new algorithm and provide an empirical evalua-
tion based on that implementation.

The remainder of the paper is organized as follows. Sec-
tion 2 gives a short overview of CI-nets and the CI-net satis-
fiability checking problem. Section 3 presents our novel ap-
proach to CI-net satisfiability checking, including proofs of
correctness. Section 4 summarizes the results from our em-
pirical evaluation of this satisfiability checking method. Fi-
nally, Section 5 discusses future applications of this work.

2 Overview of CI-Nets
Conditional importance networks (CI-nets), which were first
introduced by Bouveret et al. [2009], allow stakeholders to
specify relative importance among sets of items, conditioned
on the presence or absence of other items.

2.1 Syntax and Semantics
Let V be a finite set of binary variables, both here and
throughout this paper. We will use the definitions from [Bou-
veret et al., 2009] for conditional importance statements (CI-
statements) and conditional importance networks (CI-nets),
which are given here as Definitions 1 and 2.

Definition 1 A conditional importance statement (CI-
statement) on V is a quadruple (S+,S−,S1,S2) of pairwise
disjoint subsets of V. This CI-statement can be written as
S+,S− : S1 � S2.

Informally, a CI-statement can be interpreted to mean:
“Given two sets of items from V, if both sets include the items
in S+ and neither set includes the items in S−, then I would
rather have the set that has all items in S1 instead of the set
that has all items in S2, ceteris paribus (all else being equal).”

Definition 2 A CI-net on V is a set C of CI-statements on V.



Formally, a CI-net C over a set of variables V is satisfiable
if and only if there exists a strict partial order (irreflexive,
asymmetric, and transitive) relation� over the powerset of V
such that:

1. For each CI-net statement S+,S− : S1 � S2, if S̄ ⊆ V \
(S+∪S−∪S1∪S2) then S̄∪S+∪S1 � S̄∪S+∪S2.

2. � is monotonic (for any Vi,Vj ⊆ V, Vi ⊃Vj⇒Vi �Vj).
Bouveret et al. [2009] define the semantics of CI-

statements in terms of worsening flips, where each worsening
flip is a pair of sets of variables (V1,V2) (where V1,V2 ⊆ V)
such that V1 is preferred to V2 (V1 �V2); i.e., replacing the set
V1 with V2 results in a worse outcome. In contrast, Santhanam
et al. [2010] define the CI-statement semantics in terms of im-
proving flips, where the same pair (V1,V2) indicates that V2 is
preferred to V1 (V2 � V1); i.e., replacing the set V1 with V2
results in a better outcome.

It is important to note that all results proven in this pa-
per hold regardless of whether worsening flips or improving
flips are used. From this point on, the word “flip” will de-
note either a worsening or an improving flip unless specifi-
cally noted. Although several of our definitions and proofs
are based on the use of improving flips, it is straightforward
to rewrite any of these using worsening flips.
Definition 3 ([Santhanam et al., 2010], after [Bouveret et
al., 2009]) A sequence of sets of variables V1,V2, · · · ,Vn−1,Vn
is an improving flipping sequence with respect to a set of CI-
net statements if and only if, for 1≤ i < n, either

1. (Monotonicity Flip) Vi+1 ⊃Vi; or
2. (Importance Flip) there exists a conditional importance

statement S+,S− : S1 � S2 in the CI-net, such that all
three of the following conditions are satisfied:
(a) Vi+1 ⊇ S+, Vi ⊇ S+, and Vi+1∩S− =Vi∩S− = /0;
(b) Vi+1 ⊇ S1, Vi ⊇ S2, and Vi+1∩S2 =Vi∩S1 = /0;
(c) if V =V \(S+∪S−∪S1∪S2), then V ∩S1 =V ∩S2.

In this definition, condition 1 states that a set containing
more variables is always preferred to a set containing fewer
variables. Condition 2 states that if the variables in S+ are in-
cluded and the variables in S− are not included, then includ-
ing the variables in S1 is more important than including the
variables in S2, all else being equal (ceteris paribus). Given
a CI-net C and two variable sets V1 and V2, we say that V1 is
preferred to V2 under C, denoted by C |=V1 �V2, if and only
if there is an improving flipping sequence with respect to C
from V2 to V1 (Proposition 1 in [Bouveret et al., 2009]).

From Definition 3, one can construct a graph where each
node corresponds to a set of variables and each directed edge
from one node to another denotes a flip. This graph is called
the preference graph of C in [Bouveret et al., 2009] and the
induced preference graph of C in [Santhanam et al., 2010;
2013a; Oster et al., 2015]; we use the shorter name here.
Definition 4 ([Oster et al., 2015]) Given a CI-net C over a
set of variables V, the preference graph G(C) = (N,E) is con-
structed as follows. The nodes N correspond to the power-
set of V, and each directed edge (V1,V2) ∈ E (alternatively,
V1→V2) indicates the existence of an improving (monotonic-
ity or importance) flip from V1 to V2, i.e., V2 �V1.

We now define two terms and one lemma that will be useful
in later proofs.

Definition 5 Let G(C) = (N,E) be the preference graph of a
CI-net C.

• An edge in E is a monotonicity edge if and only if it
corresponds to a monotonicity flip in C.

• An edge in E is an importance edge if and only if it cor-
responds to an importance flip in C.

Note that an edge in a CI-net’s preference graph may be
both a monotonicity edge and an importance edge. As an
example, consider the importance graph of a CI-net C de-
fined over a set of variables V, and let V1 and V2 be subsets of
V. Suppose the graph contains an importance edge (V1,V2),
meaning V2 is preferred to V1 according to some CI-statement.
If (and only if) V1 ⊂ V2, this importance edge (V1,V2) is also
a monotonicity edge.

It is also possible for an importance graph to have mono-
tonicity and importance edges that directly oppose each other.
Given the importance edge (V1,V2) from the previous para-
graph, there must exist a separate monotonicity edge in the
opposite direction (V2,V1) if (and only if) V1 ⊃V2. This edge
forms a cycle with the importance edge (V1,V2).

2.2 Satisfiability

A CI-net is satisfiable if and only if it does not possess any cy-
cle of flips (Proposition 2 in [Bouveret et al., 2009]). Because
each flip in the CI-net’s semantics gives rise to exactly one
corresponding edge in the CI-net’s preference graph, a CI-net
is also satisfiable if its preference graph is acyclic (Propo-
sition 4 in [Bouveret et al., 2009]). From this satisfiability
condition, Santhanam et al. [2010] developed an approach
that uses model checking tools to verify satisfiability and per-
form dominance testing for a CI-net. This approach requires
the preference graph to be constructed explicitly and encoded
into the input language of the model checker before satis-
fiability checking begins. The model checker then decides
whether the preference graph is acyclic.

Although the problem of deciding the satisfiability of a CI-
net is PSPACE-complete [Bouveret et al., 2009], the prefer-
ence graph of a CI-net that is defined over N variables can be
checked for cycles in O(2N) time, so this problem is feasible
for CI-nets that are defined over relatively few variables. Un-
fortunately, as we will see in Section 4, the model checking-
based approach is unacceptably slow for larger, more com-
plex CI-nets because of the additional Θ(2N) time required to
build and encode the preference graph. Any other technique
for checking a CI-net’s satisfiability by directly analyzing its
preference graph suffers from a similar bottleneck: though
the graph analysis itself may be efficient (with a time cost
that is linear in the size of the graph), the cost to construct
an encoding of the graph for automated analysis dominates
the cost to analyze the encoded graph. This bottleneck must
be avoided or reduced in order to improve the practical appli-
cability of CI-nets for automating preference reasoning over
large, complex sets of qualitative preferences.



3 Verifying CI-Net Satisfiability Without a
Preference Graph

We now introduce a different approach for verifying a CI-
net’s satisfiability, which avoids the performance bottleneck
imposed by constructing the full preference graph for the CI-
net. Our approach uses properties of the CI-net semantics to
efficiently generate the set of all importance flips specified by
the CI-net’s statements, then uses this set of importance flips
to simulate analysis of the CI-net’s full preference graph.

We begin by proving several results that lead to a necessary
and sufficient condition for satisfiability of a CI-net. This
condition is equivalent to the condition defined by [Bouveret
et al., 2009], but it can be verified for a given CI-net using
only the CI-net’s importance flips; the full preference graph
is not needed. Once this satisfiability condition is defined, we
describe an efficient algorithm for verifying this condition.

3.1 Implicitly Modeling Monotonicity Flips
An advantage of checking the satisfiability of a CI-net using
a preference graph is that every improving (or worsening) flip
induced by a CI-net is represented explicitly within its pref-
erence graph. This allows us to apply existing algorithms for
identifying cycles in a directed graph, with correctness guar-
anteed by the process used to construct the graph. However,
there is no need to explicitly represent the monotonicity edges
in a CI-net’s preference graph, since monotonicity flips are
defined with respect to the subset relation over sets of vari-
ables. In fact:

Theorem 1 Any two CI-nets C1 and C2 defined over the same
number of preference variables have the same set of mono-
tonicity flips (edges), down to renaming of variables.

Proof. From the definition of a monotonicity flip. 2

Furthermore, it is not necessary to check every monotonic-
ity flip to see whether it is part of a cycle. The following
theorems show why this is the case.

Definition 6 An empty CI-net is a CI-net that contains no
CI-statements.

Theorem 2 Every empty CI-net is satisfiable.

Proof. Suppose in contradiction that an empty CI-net C
over a set of preference variables V is not satisfiable. Then C
possesses a cycle of flips V1 � ·· · �Vk �V1, where V1, . . . ,Vk
are unique subsets of V (i.e., distinct elements of 2V). Be-
cause C is empty, it contains no CI-statements, so all flips of
C are monotonicity flips (by Definition 5).

Suppose the cycle contains one flip from V1 to itself. (Then
the importance graph of C contains a self-loop V1 → V1.)
Since all flips of C are monotonicity flips, V1 ⊂ V1, which
is not possible.

Suppose the cycle is a sequence of k flips V1 � ·· · � Vk �
V1, where k > 1. Since all flips of C are monotonicity flips,
the flip Vj � Vi exists if and only if Vi ⊂ Vj. Therefore, V1 ⊃
·· · ⊃Vk ⊃V1, which is not possible. 2

Theorem 3 Every cycle of two or more flips of a CI-net in-
cludes at least one importance flip.

Proof. A CI-net may have no importance flips, exactly one
importance flip, or more than one importance flip. This re-
sult holds trivially for CI-nets with no importance flips (i.e.,
empty CI-nets), since they have no cycles (by Theorem 2).

Consider the set of all CI-nets that have exactly one impor-
tance flip. For all positive integers n > 0, every CI-net with
n variables induces exactly the same set of monotonicity flips
as every other CI-net with n variables (Theorem 1). The only
possible difference between the semantics of two CI-nets with
n variables is in their set of importance flips.

A CI-net with one variable (n = 1) induces exactly one
monotonicity flip. We do not consider one-flip cycles (self-
loops), so the cycle’s second flip must be our importance flip.
Therefore, the theorem holds in this case.

Now choose an integer n > 1 and choose an arbitrary CI-
net C with n variables, such that C has exactly one importance
flip and at least one cycle of flips. Choose an arbitrary cycle
of flips in C. This cycle either does or does not contain the
only importance flip of C.

Suppose this cycle does not contain the importance flip.
Since every flip is a monotonicity flip, an importance flip, or
both (Definition 5), all flips in this cycle must be monotonic-
ity flips. As in the proof of Theorem 2, we then have a path of
k flips V1 � ·· · �Vk �V1, where k > 1 and each Vi is a unique
subset of the CI-net’s variables V. Since all flips in the cy-
cle are monotonicity flips, it follows that V1 ⊃ ·· · ⊃Vk ⊃V1,
which is not possible. Therefore, our chosen cycle must con-
tain the one importance flip in the preference graph.

This can immediately be generalized to preference graphs
that contain more than one importance flip. In such a graph,
any cycle that used only monotonicity flips would imply the
existence of two sets V1 and Vk, where V1 ⊃ Vk ⊃ V1. Any
cycle must therefore contain one or more importance flips. 2

We can use this result to rewrite the necessary and suffi-
cient condition for satisfiability in the following way.

Theorem 4 A CI-net C is satisfiable if and only if it has no
importance flips that participate in a cycle of flips.

Proof. Immediate from Proposition 2 in [Bouveret et al.,
2009] and from Theorem 3. 2

3.2 Extracting a CI-Net’s Importance Flips
Since checking for a monotonicity flip from one variable set
Vi to another variable set Vj is as simple as checking whether
Vi ⊂ Vj, it is sufficient for the model of a CI-net’s seman-
tics to encode only the importance flips. Because the ceteris
paribus semantics of CI-net allows each CI-statement to in-
duce multiple importance flips, we must explicitly identify
each importance flip that is implied by a CI-statement. Algo-
rithm 1 takes a CI-net C defined over the set of variables V
and uses it to construct the set CImp of all importance flips in-
duced by C. Each pair (Vi,Vj) in CImp denotes an importance
flip Vj �Vi specified by the original CI-net C; in turn, this flip
is represented by an importance edge Vi→ Vj in the CI-net’s
preference graph. This fact — that each pair (Vi,Vj) in CImp
represents at once both an importance flip and a preference-
graph edge — is essential to the correctness of our approach.



Algorithm 1 Extract all importance flips from a CI-net
function IMPORTANCEFLIPS(C, V)

CImp← /0 . CImp ⊆ 2V×2V

for all statements S+,S− : S1 � S2 ∈ C do
for all γ ⊆ V\ (S+∪S−∪S1∪S2) do

CImp← CImp∪{(γ ∪S+∪S2,γ ∪S+∪S1)}
end for

end for
return CImp

end function

Theorem 5 Given a CI-net C, the set CImp returned by
IMPORTANCEFLIPS(C) contains the pair (Vi,Vj) if and only
if the preference graph G(C) contains the edge Vi→Vj.

Proof. Immediate from Algorithm 1 and Definition 4. 2

3.3 Using Importance Flips to Identify Cycles
To show that a CI-net C is satisfiable, it is necessary and suf-
ficient to show that C does not contain a cycle of flips (Propo-
sition 2 in [Bouveret et al., 2009]). We now have an implicit
representation of all monotonicity flips via the subset relation,
and we can construct an explicit representation of all impor-
tance flips using the IMPORTANCEFLIPS function defined in
Algorithm 1. At this point, we have all that we need to re-
construct the CI-net’s preference graph and apply a standard
cycle detection algorithm to decide whether the preference
graph is acyclic, which is sufficient to decide the CI-net’s sat-
isfiability (by Proposition 4 in [Bouveret et al., 2009]).

Unfortunately, this is inefficient, since Θ(2|V|) time is
needed to build the preference graph before beginning the
cycle-detection algorithm [Oster et al., 2015]. Since we al-
ready know that monotonicity edges alone cannot form a cy-
cle in the preference graph, we can focus on checking whether
each importance flip is part of a cycle. In this subsection,
we prove several more results that allow us to focus our
satisfiability-checking efforts on a subset of the importance
flips without compromising correctness.

Definition 7 An importance flip (or edge) of a CI-net C is

• widening if |V1|> |V2|,
• steady if |V1|= |V2|, or

• narrowing if |V1|< |V2|.
These classes form a partition of the set of importance flips
(or edges) of C.

Observe that if the CI-net C is defined using improving-flip
semantics (as described in Section 2), widening flips move
in the same direction as monotonicity flips, while narrowing
flips move in the opposite direction. If worsening-flip seman-
tics are used, the monotonicity preference will be reversed;
in this case, the uses of widening and narrowing flips in the
following proofs must be interchanged.

Theorem 6 Every CI-net with exactly one widening impor-
tance flip and no other importance flips is satisfiable.

Proof. Choose such a CI-net C. Let V1 � V2 be the only
importance flip of C; since it is a widening flip, |V1| > |V2|
(by Definition 7). By Theorem 3, if there is a cycle of flips of
C, then V1 �V2 must participate in it; if this is the case, then
V2 must be reachable from V1.

Since |V1| > |V2|, there is no monotonicity flip from V1 to
V2, and there is no monotonicity flip from V1 to any subset of
V2 (from which V2 could be reached by another monotonicity
flip). But there is also no importance flip from V1 to V2 or any
of V2’s subsets, because the CI-net has no narrowing impor-
tance flips. As a result, V2 is not reachable from V1, so C has
no cycles and is therefore satisfiable. �

This result generalizes immediately to CI-nets with more
than one widening importance flip.
Theorem 7 Every CI-net with zero or more widening impor-
tance flips, but no other (steady or narrowing) importance
flips, is satisfiable.

Proof Sketch. This can be proven by induction on the num-
ber n of widening importance flips of a given CI-net C. When
n= 0, we have an empty CI-net, so the theorem holds by The-
orem 2; when n = 1, the theorem holds by Theorem 6; and
when n > 1, the theorem holds by an argument similar to that
in the proof of Theorem 6. 2

We can use these results to rewrite the satisfiability condi-
tion once more.
Theorem 8 A CI-net C is satisfiable if and only if it has no
steady or narrowing importance flips that are part of a cycle.

Proof. Immediate from Proposition 2 in [Bouveret et al.,
2009] and from Theorem 7. 2

3.4 Algorithm
The satisfiability condition in Theorem 8 immediately implies
an effective algorithm for verifying the satisfiability of a CI-
net: decide whether the CI-net induces any steady or narrow-
ing importance flips that participate in a cycle of flips. We
can express the algorithm as a composition of three functions:
ISSATISFIABLE, INCYCLE, and IMPORTANCEFLIPS. These
functions are defined in Algorithm 2, except that the IMPOR-
TANCEFLIPS function was defined in Algorithm 1.

The INCYCLE function returns true if there exists a se-
quence of steps that can be used to rewrite a given importance
flip Vj � Vi as an invalid flip Vi � Vi. Each step in such a se-
quence involves choosing an improving (or worsening) flip
that allows a new set of CI-variables to be substituted into the
left side of the statement. In doing so, we traverse the graph
implicitly, without the need for an explicit graph construction.
The INCYCLE function performs this traversal, checking at
each recursive call whether (1) the cycle beginning and end-
ing at Vi can be completed with zero or more monotonicity
flips from Vk or (2) any outgoing preference edges from Vk
to some other variable set V` can be used to rewrite the left
side of the preference statement. If neither (1) nor (2) is true,
INCYCLE returns false; if (1) is true, INCYCLE returns true;
and if (1) is false but (2) is true, INCYCLE tries all possible
rewritings of the left side of the preference statement to see if
any of them can be used to complete a cycle.



Algorithm 2 Decide if CI-net is satisfiable
function ISSATISFIABLE(C)

let CImp = IMPORTANCEFLIPS(C)
for all Vj �Vi ∈ CImp where

∣∣Vj
∣∣≤ |Vi| do

if INCYCLE(CImp,Vj �Vi,{} , |Vi|) then
return false

end if
end for
return true . if no statement is in a cycle

end function

function INCYCLE(CImp,Vk �Vj,Path,n)
for all Vm �V` ∈ Path do

if Vk ⊆V` then . monotonicity completes a cycle
return true

end if
end for
Path = Path∪{Vk �Vj} . append flip to path

. Is any importance flip from Vk part of a cycle?
for all V` �Vk ∈ CImp do

if INCYCLE(CImp,V` �Vk,Path,n) then
return true

end if
end for

. Is any monotonicity flip from Vk to a variable-set
. of size between (|Vk|+1) and n part of a cycle?

for all V` ⊆ V where Vk ⊂V` and |V`| ≤ n do
if INCYCLE(CImp,V` �Vk,Path,n) then

return true
end if

end for
Path = Path\{Vk �Vj} . remove flip from path
return false

end function

Theorem 9 A given CI-net C is satisfiable if and only if the
ISSATISFIABLE function in Algorithm 2 returns true when
invoked with C as its argument.

Proof Sketch. The IMPORTANCEFLIPS function in Algo-
rithm 1 returns CImp, which is the set of all importance flips
induced by the semantics of C. By Theorem 5, CImp is equiv-
alent to the set of all importance edges in the preference graph
of C. For any given importance flip Vj � Vi, the INCYCLE
function returns true exactly when a sequence of improving
importance flips is constructed (by recursion) from Vi to Vi via
Vj. Because ISSATISFIABLE invokes the INCYCLE function
on every steady or narrowing importance flip of C and returns
true if any one call to INCYCLE returns true, the satisfiability
condition of Theorem 8 is fulfilled by this algorithm. 2

4 Empirical Evaluation
We evaluated our satisfiability-checking method by running
Java implementations of both our method and the model
checking-based method of Santhanam et al. [2010] on 687
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Figure 1: Median time needed to check satisfiability of CI-
nets with (a) 5 statements and (b) 10 statements.

randomly generated CI-nets, then comparing the time and
memory used by each approach. The CI-nets in the test set
were defined over 5 to 16 binary variables, with either 5 or
10 CI-statements. The test set contained 30 CI-nets with each
combination of n variables and m statements, except fewer
CI-nets with 16 variables were tested (15 CI-nets with 5 state-
ments and 12 CI-nets with 10 statements).

Although verifying a CI-net’s satisfiability is PSPACE-
complete in general, our empirical evaluation shows that our
algorithm tends to significantly reduce the average time and
memory needed to check the consistency of many CI-nets,
compared to the model checking-based approach that con-
structs the entire preference graph. Figures 1 and 2 show
the median time and memory that both approaches used to
check the consistency of a CI-net defined over varying num-
bers of variables, with either 5 or 10 CI-statements. In most
cases, our algorithm reduces time usage by about two orders
of magnitude compared to the model checking-based method.

However, our method performs poorly on CI-nets that con-
tain statements with a large proportion of narrowing impor-
tance flips, sometimes taking several times longer than the
model checking-based method. (Our use of medians, rather
than means, hides this fact to emphasize the significant im-
provement in most cases.) This occurs because the INCY-
CLE function generates and checks a potentially large set of
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Memory used to check satisfiability: CI-nets with 5 statements
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Memory used to check satisfiability: CI-nets with 10 statements
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Figure 2: Median memory used to check satisfiability of CI-
nets with (a) 5 statements and (b) 10 statements.

monotonicity edges for each narrowing importance flip. The
effect is worsened by the fact that our implementation of Al-
gorithm 2 does not perform any memoization, nor does it
“prune” improving flips from CImp after they are verified.

We are continuing to explore how Algorithm 2 can be mod-
ified to improve its efficiency while preserving its correct-
ness. One possibility might be a hybrid approach that uses
our method to construct reduced models of parts of the CI-
net semantics, which are then verified using model checking.

5 Conclusion and Future Work
We have presented a new algorithm for verifying a CI-net’s
satisfiability without constructing and analyzing the entire
preference graph for the CI-net. Our algorithm is correct
because it simulates the behavior of an algorithm that ana-
lyzes the entire preference graph, but our algorithm avoids
the overhead required to actually construct and analyze the
entire graph. In most cases, our algorithm can significantly
reduce the time and memory required for satisfiability check-
ing compared to existing methods, making it feasible to au-
tomate preference analysis over CI-nets with more variables
than existing methods can support.

This algorithm is a step toward our long-term goal of de-
veloping a “preference workbench”, which will allow users

with no special training or experience in qualitative prefer-
ence reasoning techniques to make better-informed decisions
using the expressive power of CI-nets. Such a tool may
be especially useful in the area of requirements engineering,
where it is common for a wide variety of different stakehold-
ers involved in the design of a software system to express
set-based conditional qualitative preferences regarding pos-
sible features or properties that they need or desire in the
system [Oster et al., 2015]. When completed, our “prefer-
ence workbench” will include facilities for editing, visualiz-
ing, comprehending, and tracing preferences within a CI-net
(or related) preference model. We look forward to seeing how
all of these features will be enabled by our efficient algorithm
for verifying the satisfiability of a CI-net.
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